<) FORESCOUT

Automated Cybersecurity Across Your Digital Terrain

AN INNOVATIVE, AUTOMATED APPROACH TO LEVERAGING THREAT INTEL FOR MODERN THREAT DETECTION AND RESPONSE

Liran Chen , CISSP

VP Of Technical Services and Operations

Manage Cyber Risk & Mitigate Threats

The Threat Terrain Why are we here today?

MITRE ATT&CK Limitations of traditional security siloed solutions.

ICEFALL threat Intelligence

The Embedded Risk.

Connecting Risk and threat

Hacktivist

Trends Impacting Your Digital Terrain

Attackers Are Targeting Unmanaged Systems

35%

OF ORGANIZATIONS HAD IOT/OT DEVICES TARGETED DIRECTLY OR AS PART OF A LARGER ATTACK.

Fragmented Security Products Create Alert Fatigue

450

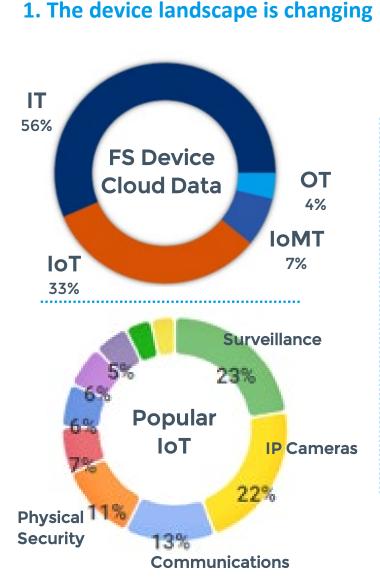
ALERTS PER HOUR THAT ANALYSTS MUST INVESTIGATE.

Vedere Labs Forescout Research Who Are We

The Focus

'Boutique' threat intel team

- ✓ Focus on threats against unmanaged devices (IoT/IoMT/OT)
- Focus on the network (rather than the endpoint as most other mainstream labs)
- ✓ 10+ years experience in the field


The Threat Intel

- Original vulnerability research activities (180+ CVEs in 18 months)
- Manual and automatic analysis of malware samples collected on the ground, over our own Adversary Engagement Platform or observed over the networks of Forescout customers

A Brief History of OT Attacks

	Stuxnet 2010	Industroyer 1 (Crash Override)	Triton 2017	Industroyer 2	Ransomware (spills to OT) 2022
Description	First publicly known digital weapon developed	Fully automated malware that could detonate when the attackers wanted to	First attack to target Safety Instrumented System (SIS) controllers	Evolution of Industroyer 1. It focuses on IEC-104 protocol commonly used in the electric sector	Ransomware incidents impacting or reaching ICS systems (e.g., Colonial Pipeline, Water distribution)
Target	Sabotage nuclear enrichment facility in Iran	Cause an energy blackout in the Ukrainian capital, Kiev	A Saudi Arabian oil and gas facility. Attackers knew they could cause physical damage (even death)	(unsuccessful) cause a widespread power outages on April 8, 2022, in Ukraine	Medium Large organization in Services, Manufacturing and Retail
Threat Attribution	Gossip Girl, (a supra threat actor representing multiple countries, institutions or groups).	Sandworm APT, linked to the Russian GRU	A Russian government owned research center	Sandworm APT, linked to the Russian GRU	Conti, Revil, Clop (criminal gangs)
Main Features	Highly sophisticated Highly targeted	Low sophistication Multistage Automated	Highly targeted to a specific device (model and firmware version)	Low sophistication Less targeted	Non-targeted Opportunity driven Cyber crime as a service

Key Current Trends

2012 **Aidra IoT Botnet** 2013 **Government EMS Target breached** hack via HVAC 2014 **Bashlite IoT** 2015 **Hack into police Botnet CCTVs** 2016-2018 Mirai, Linux/ 2017 **IRCTelnet**, **Dallas alarm** Brickerbot, Hajime, system hack Persirai, HNS, OMG **Casino hack via** IoT botnet fish tank 2018 2019 Fridge & medicine **Dark Nexus IoT** supermarket hack botnet 2021 2022 Indian power grid **BAS hack "bricks"** hack via BAS ³/₄ of devices Verkada hack Email espionage **Boston C hospital** hack via HVAC via cameras

2. IoT devices used as entry point for attacks

3. Attackers want money!

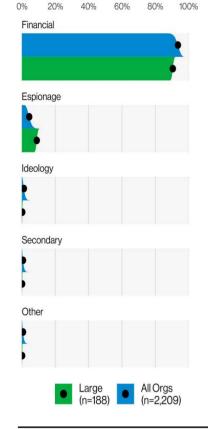


Figure 15. Motives in External actors by org size

https://www.verizon.com/business/resources/reports/d bir/

6

OT:ICEFALL VEDERE LABS

How to Tackle a Decade of Insecure-by-Design Practices in OT

OT:ICEFALL Summary

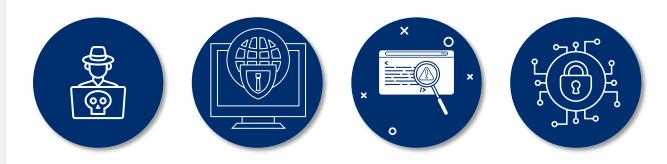
Goals & Findings

- Find and quantify insecure-by-design vulnerabilities
- Discuss impact on OT certification, risk management, supply chain, and offensive capabilities
- Public disclosure on June 21st: 56 CVEs on 10 vendors

Impact & Mitigation

Thousands of devices exposed online

Devices often found on critical infrastructure verticals such as Oil & Gas, Power Generation & Distribution, Manufacturing, Water Treatment & Distribution, Building Automation


Often no patches, but focus on cyber
 hygiene

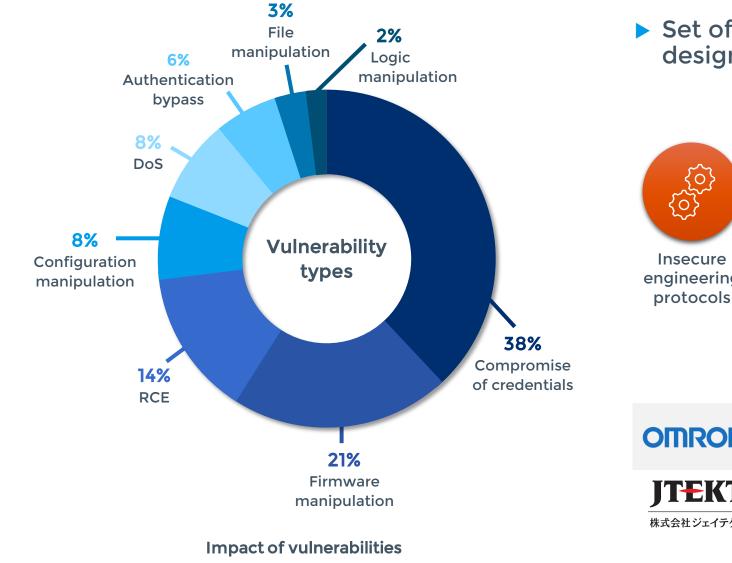
8

Why Research Insecure-by-Design OT?

Past decade...

- Project Basecamp highlighted insecure by-design critical OT devices and protocols
- Real-world OT incidents abusing insecure-by-design functionality such as:
- Industroyer, TRITON, INCONTROLLER

Biggest issues facing OT security


- Persistent lack of basic security controls
- Opaque and proprietary nature of these systems

9

Disclosure on June 21st

Set of 56 CVEs demonstrating insecure-bydesign practices in OT

4 main categories of vulnerabilities:

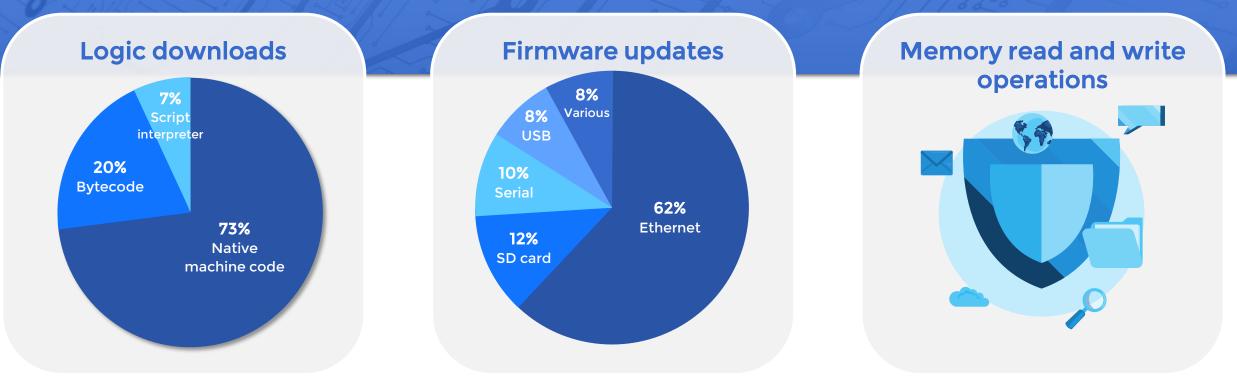
engineering protocols

Insecure

firmware

updates

broken authentication


Remote code execution

Affecting 10 vendors:

Not All Insecure Designs are Equal

Three main pathways to gaining RCE on level 1 devices via native functionality:

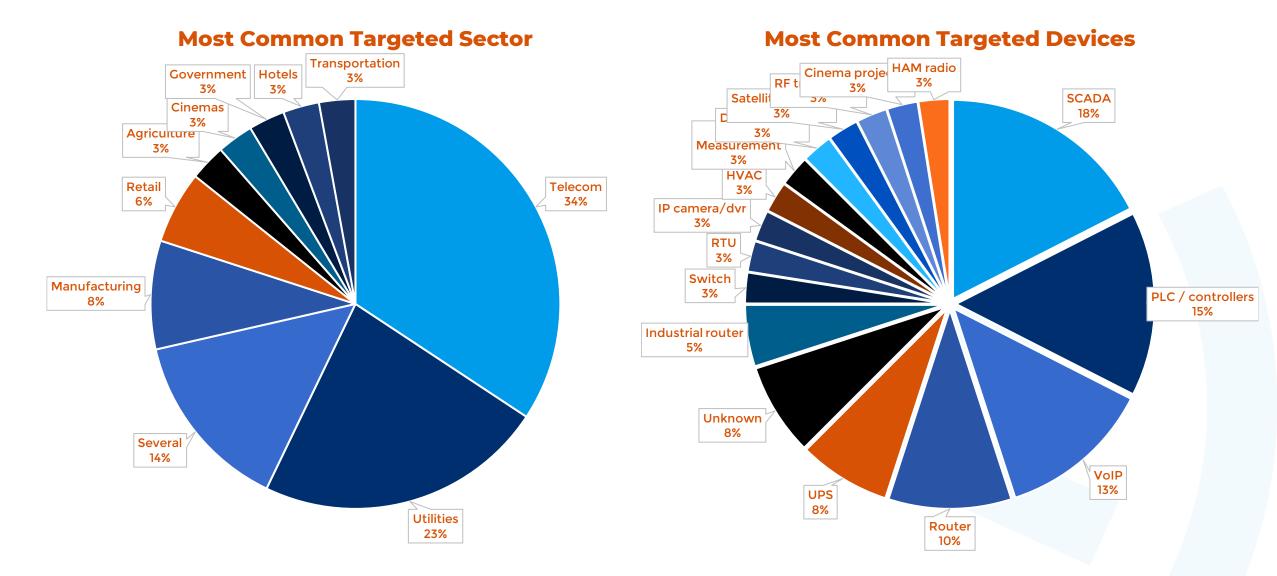
- None of the systems analyzed support logic signing and most (52%) compile their logic to native machine code
- 62% of those systems accept firmware downloads via Ethernet, while only 51% have authentication for this functionality.

Hacktivists

Hacktivist Groups are Targeting IoT/OT

General Trends

- **False Myths**: OT is only being exploited by state actor malware or cybercriminal gangs
- The Social Plague: Hacktivists brag about their attacks on social media platforms (likely to inspire next generations of threat actors to go even further in their attacks)


GhostSec

- Founded in 2015 with initiatives against ISIS
- ~16 members
- Highly organized activist group
- Heavy presence on Twitter and Telegram
- Has ties with Anonymous

OneFist

- Founded in March 2022 as a pro Ukrainian group
- Members are international
- All their targets are located in Russia
- Their main goal is to denying availability of services or causing physical destruction.

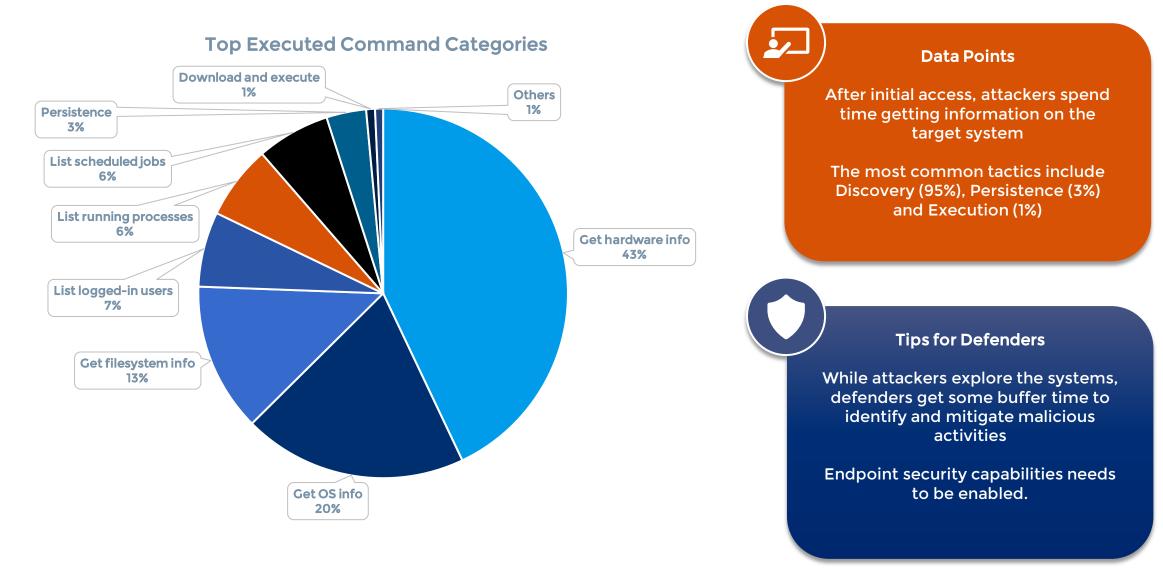
Hacktivists – Main Targets

Hacktivists - Common TTPs

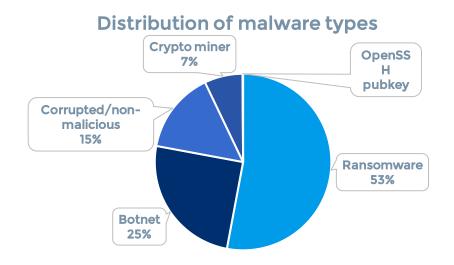
INTERNET

<u>Shodan, Censys</u> and <u>Kamerka</u> are used to discover exposed devices in the targeted countries

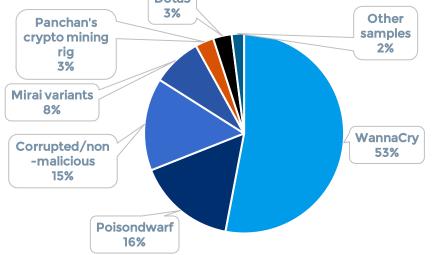
Routers and IP cameras are often compromised via either default or weak credentials.



Known vulnerabilities are being used to gain access to exposed routers. Threat Actors develop custom tools for data collection and attack execution



After initial access, attackers explore the system



TA0007 – Discovery (95%) / TA0003 – Persistence (3%) / TA0002 – Execution (1%)

And then drop malware

Distribution of malware hashes per family

Data Points

2/

There are endemic threats such as the WannaCry ransomware and variants of the Mirai botnet that will probably never go away

Large hosting providers such as Google Cloud, OVH SAS are used by attackers to host malware

Tips for Defenders

Malware hashes are insufficient as loCs because some malware changes its hash for each new victim.

Better to detect/hunt for TTPs and anomalous behavior than to rely solely on IoCs

MITRE ATT&CK


Why Use MITRE ATT&CK

- ATT&CK stands for Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK). MITRE Ingenuity ATT&CK is a globally-accessible knowledge base of adversary tactics and techniques based on real-world observations.
- main challenges in cybersecurity is the semantic gap between attackers and defenders
- While attackers think strategically and employ different TTPs to achieve their goals, defenders must process low-level events that are generated by IDS that only provide information about small steps within larger attacks.
- Tactics refer to the objectives that attackers want to achieve, such as gaining initial access into a network.
- Techniques are the actions that attackers take to achieve a tactical objective, such as exploit public facing applications.
- Procedures are specific implementation examples of Techniques used by adversaries, such as using sqlmap for SQL injection

Microsoft Distinguished Engineer John Lambert: "Defenders think in lists. Attackers think in graphs. As long as this is true, attackers win."

MITRE ATT&CK Mapping - Tactics

ATT&CK[®] Enterprise

Turning Low Level Events to TTPs

Initial Access	Execution	Persistence	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Program State	Hooking	Exploitation for Evasion	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/O Module Discovery	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Change Program State	Denial of Control
Engineering Workstation Compromise	Execution through API	Program Download	Masquerading	Network Connection Enumeration	External Remote Services	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Masquerading	Denial of View
Exploit Public- Facing Application	Graphical User Interface	Project File Infection	Rogue Master Device	Network Service Scanning	Program Organization Units	Detect Program State		Block Reporting Message	Modify Control Logic	Loss of Availability
External Remote Services	Man in the Middle	System Firmware	Rootkit	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Loss of Control
Internet Accessible Device	Program Organization Units	Valid Accounts	Spoof Reporting Message	Remote System Discovery	Valid Accounts	Location Identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
Replication Through Removable Media	Project File Infection		Utilize/Change Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
Spearphishing Attachment	Scripting					Point & Tag Identification		Device Restart/ Shutdown	Rogue Master Device	Loss of View
Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	Manipulation of Control
Wireless Compromise						Role Identification		Modify Alarm Settings	Spoof Reporting Message	Manipulation of View
Figure 5: MITRI	E ATT&CK for I	CS tactics and t	echniques.			Screen Capture		Modify Control Logic	Unauthorized Command Message	Theft of Operational Information

There are three impact techniques explicitly mentioned by MITRE as not being detectable, since they are related to non-technical goals of adversaries. These are "Damage to Property," "Loss of Productivity and Revenue" and "Theft of Operational Information." Some other techniques are not directly detectable via network monitoring, but some of their associated cause and effects (such as file transfers) may be observed by eyeInspect. These are "Masquerading," "Rootkit," "Screen Capture," and "Wireless Compromise." The other techniques can be detected by eyeInspect's detection engines and contextual information.

As an example, we mapped **1,270 unique built-in event types from eyeInspect 4.1 to ATT&CK techniques** that do not require specific contextual information, so that every time one of these events is observed in the network it can be directly mapped to a technique. The various techniques covered by eyeInspect are mapped below.

Program Download

Rootkit

System Firmware

Utilize/Change Operating Mode

Turning Events into TTPs 11

ATT&CK MITRE – Example Remote Access

Techniques

2. <u>ICS</u>

1.

3. Remote Services

- Remote Services
- Adversaries may leverage remote services to move between assets and network segments. These services are often used to allow operators to interact with systems remotely within the network, some examples are RDP, SMB, SSH, and other similar mechanisms. [1] [2] [3]
- Remote services could be used to support remote access, data transmission, authentication, name resolution, and other remote functions. Further, remote services may be necessary to allow operators and administrators to configure systems within the network from their engineering or management workstations. An adversary may use this technique to access devices which may be dual-homed ^[1] to multiple network segments, and can be used for Program Download or to execute attacks on control devices directly through <u>Valid Accounts</u>.
- Specific remote services (RDP & VNC) may be a precursor to enable <u>Graphical User Interface</u> execution on devices such as HMIs or engineering workstation software.
- Based on incident data, CISA and FBI assessed that Chinese statesponsored actors also compromised various authorized remote access channels, including systems designed to transfer data and/or allow access between corporate and ICS networks.^[4]

(i)

- ID: T0886
- Sub-techniques: No sub-techniques

ID	Name	Description
<u>\$1045</u>	INCONTROLLER	INCONTROLLER can use the CODESYS protocol to remotely connect to Schneider PLCs and perform maintenance functions on the device. INCONTROLLER can use Telnet to upload payloads and execute commands on Omron PLCs. ^[11] The malware can also use HTP-based CGI scripts (e.g., cpu.fcgi, ecat.fcgi) to gain administrative access to the device.
<u>C0009</u>	Oldsmar Treatment Plant Intrusion	During the <u>Oldsmar Treatment Plant Intrusion</u> , the threat actors gained access to the system through remote access software, allowing for the use of the standard operator HMI interface.
<u>\$0496</u>	REvil	<u>REvil</u> uses the SMB protocol to encrypt files located on remotely connected file shares. ^[9]
<u>C0034</u>	Sandworm Team	Sandworm Team appears to use MS-SQL access to a pivot machine, allowing code execution throughout the ICS network.
<u>\$0603</u>	<u>Stuxnet</u>	Stuxnet executes malicious SQL commands in the WinCC database server to propagate to remote systems. The malicious SQL commands include xp_cmdshell, sp_dumpdbilog, and sp_addextendedproc.
<u>C0088</u>	TEMP.Veles	TEMP.Veles utilized remote desktop protocol (RDP) jump boxes to move into the ICS environment.

Connecting Risk and threats

Mapping Defense Lines

Today's SOC Reality

alerts per hour ¹

45%

of alerts are

false positives ²

75% of enterprises spends an equal amount, or more

time, on false positives

than on legitimate attacks.

3

1 "The State of Security Operations", Forrester 2020

2 "The Voice of the Analysts: Improving Security Operations Center Processes Through Adapted Technologies" IDC InfoBrief

3 "Reaching the Tipping Point of Web Application and API Security", 2021, ESG

Planning Defense Lines via MITRE ATT&CK mapping

Plan : Use ATT&CK to plan your cyber security strategy. Build your defenses to counter the techniques known to be used against your type of organization and equip yourself with security monitoring to detect evidence of ATT&CK techniques in your network

Run Adversary Emulation Plans

Use ATT&CK for Adversary Emulation Plans to improve Red team performance. Red teams can develop and deploy a consistent and highly organized approach to defining the tactics and techniques of specific threats, then logically assess their environment to see if the defenses work as expected.

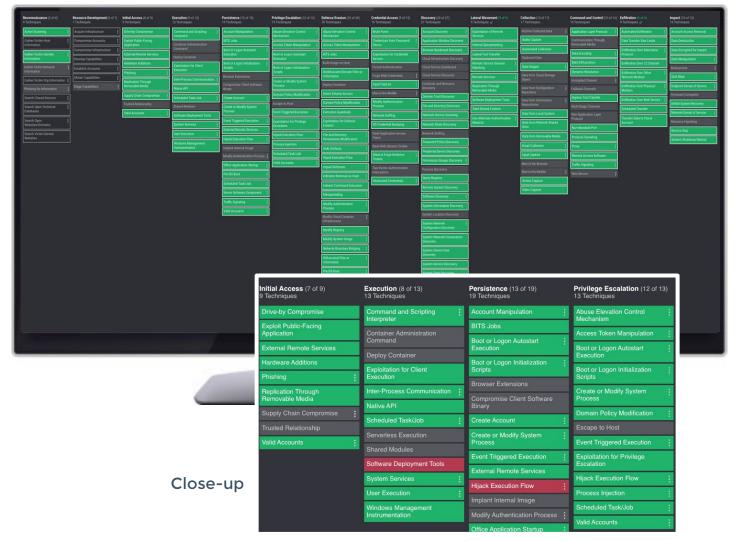
Identify Gaps in Defenses

ATT&CK matrices can help Blue teams better understand the components of a potential or ongoing cyber attack to identify gaps in defenses and implement solutions for those gaps. ATT&CK documents suggested remediations and compensating controls for the techniques to which you are more prone.

Integrate Threat Intelligence

ATT&CK can effectively integrate your <u>threat intelligence</u> into cyber defense operations. Threats can be mapped to the specific attacker techniques to understand if gaps exist, determine risk, and develop an implementation plan to address them.

XDR


Better Detection and Response of True Threats, from a Single Pane of Glass

- Automates and accelerates the process of detecting, investigating, hunting for, and responding to advanced threats across the entire enterprise:
 - Campus
 - Remote
 - Datacenter
 - Cloud
 - IT / OT / IoMT
- Combines essential SOC technologies and functions into single, TIP, SOAR, UEBA

MITRE ATT&CK[®] for Detection Coverage

XDR let's you see which TTPs you will be able to detect based on specified data sources

The Value:

- **Onboarding Prioritization**: What data sources should be ingested for broad, or specific, technique coverage?
- **Gap Analysis**: Where are potential blinds spots that adversaries can exploit to gain access?
- **Coverage Planning:** What happens to MITRE ATT&CK coverage if other data sources are added?

← Dashboard indicates (in green) all of the TTPs that can be detected with these data sources, for example:

- Firewall
- EDR
- Windows Sysmon
- Windows Events

